0% Complete
صفحه اصلی
/
ششمین کنفرانس بین المللی میکروالکترونیک ایران
Quantum Machine Learning Acceleration with Quantum Control Techniques
نویسندگان :
Sara Mahmoudi Rashid
1
1- University of Tabriz
کلمات کلیدی :
Quantum computing،Machine learning،Quantum control techniques،Support vector machines (SVMs)،Computational efficiency،Power reduction
چکیده :
The integration of quantum computing with machine learning represents a significant frontier in computational research. This paper introduces an innovative approach that combines quantum control techniques with quantum machine learning (QML) to achieve notable advancements in performance and efficiency. The proposed methodology introduces a new quantum control framework designed to optimize quantum machine learning algorithms. This approach not only enhances computational speed but also improves the accuracy of quantum-enhanced support vector machines (SVMs) for classification tasks. The innovation lies in the application of advanced quantum control techniques, which are demonstrated to offer superior performance compared to existing methods. Additionally, the paper presents novel strategies for reducing power consumption in quantum computing systems. By incorporating dynamic quantum control, the proposed system achieves significant improvements in power efficiency, addressing one of the critical challenges in practical quantum computing applications. Benchmark tests across various datasets validate the effectiveness of the new method, showing advancements in processing efficiency and accuracy. The integration of machine learning creates new opportunities for advancements in research, potentially setting new standards in the field of quantum computing. These innovations underscore the potential for combining quantum control with machine learning to achieve groundbreaking improvements in computational capabilities and system efficiency, offering promising directions for future research and practical implementations.
لیست مقالات
لیست مقالات بایگانی شده
Neural networks & logistic regression for FPGA hardware trojan detection
Milad Pazira - Yasser Baleghi - Mohammad-Ali Mahmoodpour
Plasmonic CH4 Sensor Using an MIM Waveguide with a Hexagonal Cavity and Silver Square Island
Mohammad Ghanavati - Mohammad Azim Karami
طراحی و تحلیل یک انتگرالگیر زمانی مرتبه کسری در فناوری هایبرید پلاسمونی گرافنی
افشین احمدپور - امیر حبیب زاده شریف - فائزه بهرامی چناقلو
Design of a Calibration Circuit for Adaptive Phase-Locked Loop in the 5GHz Range Using CMOS 180nm Technology
Reza MirAlvandi - Mahdi Ehsanian
A Low-Power Differential Ring VCO Using An Active Inductor For Wireless Applications
Mahdi Alijani - Mohammadmahdi Javanmardi - Adib Abrishamifar
A Low-Power Inductor-Less Linear Wideband CMOS Balun-LNA Using Current Reuse And Linearity Techniques
Soroush Hashemi Bani - Mohammad Yavari
Tunable High-Q N-Path Filters; Review and Redesign
Ahmad Najjari - SIROUS TOOFAN - Ziaddin Daie Kuzekanani - Jafar Sobhi
Quantum Machine Learning Acceleration with Quantum Control Techniques
Sara Mahmoudi Rashid
Human Presence Detection and Energy Harvesting Using SWIPT
Leila Mahmoodi - Khosrow Haj Sadeghi
Comparison between Hardware/Software Co-design of RiscV Vector and Scalar Implementation of Deep Neural Networks
Seyed Kian Mousavikia - Morteza Mousazadeh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.1.2