0% Complete
صفحه اصلی
/
ششمین کنفرانس بین المللی میکروالکترونیک ایران
Quantum Machine Learning Acceleration with Quantum Control Techniques
نویسندگان :
Sara Mahmoudi Rashid
1
1- University of Tabriz
کلمات کلیدی :
Quantum computing،Machine learning،Quantum control techniques،Support vector machines (SVMs)،Computational efficiency،Power reduction
چکیده :
The integration of quantum computing with machine learning represents a significant frontier in computational research. This paper introduces an innovative approach that combines quantum control techniques with quantum machine learning (QML) to achieve notable advancements in performance and efficiency. The proposed methodology introduces a new quantum control framework designed to optimize quantum machine learning algorithms. This approach not only enhances computational speed but also improves the accuracy of quantum-enhanced support vector machines (SVMs) for classification tasks. The innovation lies in the application of advanced quantum control techniques, which are demonstrated to offer superior performance compared to existing methods. Additionally, the paper presents novel strategies for reducing power consumption in quantum computing systems. By incorporating dynamic quantum control, the proposed system achieves significant improvements in power efficiency, addressing one of the critical challenges in practical quantum computing applications. Benchmark tests across various datasets validate the effectiveness of the new method, showing advancements in processing efficiency and accuracy. The integration of machine learning creates new opportunities for advancements in research, potentially setting new standards in the field of quantum computing. These innovations underscore the potential for combining quantum control with machine learning to achieve groundbreaking improvements in computational capabilities and system efficiency, offering promising directions for future research and practical implementations.
لیست مقالات
لیست مقالات بایگانی شده
طراحی سیستماتیک موجبر فوتونی مبتنی بر سیلیکون نیترید در محدوده نور مرئی
افشین احمدپور - امیر حبیب زاده شریف - فائزه بهرامی چناقلو
A MEMS Resonant Pressure Sensore Based on 2D Graphene Material
Amir Noroolahi - Farshad Babazadeh
Temperature Sensor Based on a Plasmonic MIM Waveguide with a Grill-Shaped Cavity
Mahsa Ahadi - Mohammad Ghanavati - Hamid Vahed - Mohammad Azim Karami
Design and Fabrication of Carbon Nanoparticles-Based Sensor by Arc Discharge Method
Golsa Taghizadeh Afshari - Mohammad Taghi Ahmadi - Amir Fathi
Using GDI Structure in Hardware Implementation of Convolution Operation in Deep Neural Networks
Maedeh Kadkhodaie - Sayed Masoud Sayedi
Comparison between Hardware/Software Co-design of RiscV Vector and Scalar Implementation of Deep Neural Networks
Seyed Kian Mousavikia - Morteza Mousazadeh
A Curvature Compensated CMOS Bandgap Voltage Reference With 6.8 ppm/°C Temperature Coefficient and Low Quiescent Current
Elaheh Pakravan - Mortaza Mojarad - Behboud Mashoufi
Design of a High Voltage Common Mode Resilient FlexRay Receiver in 180nm/5V CMOS Process
Hamid Sadat Mansoury - Saeed Saeedi - Mojtaba Atarodi
A runtime reconfigurable exact-approximate full-adder design
Keihan Naseri - Hadi Jahanirad
A Nanowatt Low Voltage Subthreshold CMOS Voltage Reference Based On 2-T
Nima Dehghan - Mohammad Yavari
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.1.2